Category Archives: K&R C

Trending up: Windows7, Agile Methodologies, Scrum, Python. Everything else? Down!


Linked-in are now listing ala-carte qualifications which one can endorse one’s acquaintances on, or be endorsed by them. No surprise, 20 people say I’m good at “hardware”, which is my highest endorsement. What I want to draw your attention to here is that if you hover your pointer over each of the possible qualifications, Linked-in will show you a working definition and the year-to-year trend on people who say they do-have-know-practice-are-qualified-in the specific item.

Not so surprising, people saying they know ‘hardware’ are down year on year… also C, C++, software engineering, Perforce, customer support, regression test, unit test, and so forth. VMware is 0% – neither up nor down over last year.

Agile Methodologies are up, Windows 7 is way-up, Python is up, Scrum is up. The other 44 categories, on my list, not including VMware at 0 and Windows 8 which doesn’t have a year on year trend, are down.

So, among people who list qualifications similar to mine, the majority and growth area are Python users, on Windows 7, employing Scrum and Agile project management methods.

Your choice whether that’s:

a) what everyone wants;

b) what people looking for work think they need;

c) some cross section of professionals on Linked-in.

I think its worth noting in passing, but not worth a lot of study. But it is a curiosity.

Recursion II, K&R C, worked out in advance


Earlier I posted the C++ solution to a tree/web traversal programming problem. Here’s the C solution, including a vector-like array for pointers to children, so one doesn’t have to hard code left, right, etc. In this case Max Children is 5 but it can be any number.  A sample output is included below

/* recursion.C */
/* Follow-up to _ recursion problem, web prowling question at _  */

/* input:
(M)
|   \
(N)  (P)
|  \    \
(Q) (S)  (T)

(3 level b tree, M has two kids, N and P, and N has two kids, Q and S.  P has one child – T.)

output:
Q, S, T, N, P, M

*/

#include <stdio.h>
#include <stdlib.h>

#define MAX_NAME_N_LEVEL 1000
#define MAX_KIDS  5

/* Structure in which the input data arrives: */

struct node {
char name;  struct node *(kids[MAX_KIDS]);
};

/* Structure the result vector (array) is built from: */
struct nameNLevel  {
char name;   int level;
};

/* Global scope variables for putting struct node + name data, as discovered in recursive part. */

struct nameNLevel* nsNLs[ MAX_NAME_N_LEVEL ];
int nmLvlCount = 0;

/*
* Synopsis:  void recur( int level, struct node* n ) {
* args:
*    int level
*    struct node* n
* returns: void, BUT puts a record into nsNLs[] and increments nmLvlCount.
* The record contins a node name and the level it was found at.
* Apr 5, 2011  Bill Abbott
*/

void recur( int level, struct node* n ) {
/* first make the new record in the list of names and levels */

struct nameNLevel* thisNmNLvl = (struct nameNLevel*) malloc( sizeof( struct nameNLevel));    /* allocate name string & level num struct */
if (0 == thisNmNLvl ) { /* allocation failed! */
printf(“Memory allocation failed at level %d, struct node %s, go ahead and crash!\n”, level, n->name );
}

thisNmNLvl->level = level;            /* fill in level, */
if ( n != 0 ) thisNmNLvl->name = n->name;             /* 1 char name… */
nsNLs[ nmLvlCount++ ] = thisNmNLvl;

printf(“\n”);
printf(“recur level: %d    n: 0x%x   name: %c\n”, level,  n, n->name );
/*
printf(“(long)*(n > kids)  :  0X%x \n”, (long)*(n->kids) );
printf(“(long)(n > kids[0]):  0X%x \n”, (long)(n->kids[0]) );
*/
/* those two should be the same… */

if ( 0 != n->kids ) {  /* this pointer should always have an array where it points, but just in case… */

int j;
for (j=0; j<3; j++ ) {
printf(” (n > kids[%d]) = 0x%x  “, j, (n->kids[j]) );
if ( n->kids[j] ) { printf(”   >name = %c\n”, (n->kids[j])->name ); }
else { printf( “\n” ); }
}   /* ha! This was the hardest part… */
}

int i;
/* now look for any child nodes an call recursivly for them… */
for ( i = 0; n->kids[i] != 0; i++ ) {
recur(level+1,  n->kids[i]);
} /* for int it… */

} /* recur */

/*
* Synopsis: void passThrough( struct node* n )
* args:
* returns:
* no return value. creates and outputs vector of node names,
* “highest” level first, in ascending order of child vector contents..
* Mar 27, 2011  Bill Abbott
*/

void passThrough( struct node* n ) {

int i;
for( i = 0; i< MAX_NAME_N_LEVEL; i++ ) { /* not strictly required…*/
nsNLs[ i ] = 0;  // set ’em all to null to start with.
} /* for i… */

int level = 0;
nmLvlCount = 0;

recur( level, n );

int maxLevel = 0;
for (i = 0; i < nmLvlCount; i++ ) {
if ( nsNLs[ i ]->level > maxLevel ) {
maxLevel = nsNLs[ i ]->level;
} /* if…*/
} /* for int i… */

/*    printf(“\nlevel  %d    nmLvlCount  %d     maxLevel %d \n”, level, nmLvlCount, maxLevel ); */

int lvl;
printf(“\n”);
for ( lvl = maxLevel; lvl >= 0; lvl– ) {  // this is serious, collect and print, all done.
for ( i = 0; i < nmLvlCount; i++ ) {
if (nsNLs[i]->level == lvl ) {
printf( “%c, “,  nsNLs[i]->name );
}
}
} /* for int i… */
printf(“\n”);

for ( lvl = maxLevel; lvl >= 0; lvl– ) {  // this is serious, collect and print, all done.
for ( i = 0; i < nmLvlCount; i++ ) {
if (nsNLs[i]->level == lvl ) {
printf( “%d, “, nsNLs[i]->level );
}
}
} /* for int i… */
printf(“\n”);

} /* passThrough */

/*
* Synopsis: int main( int argc, char* argv[] )
* args:
* int        argc    count of command line arguments
* char*    argv[]    vector of zero-terminated arrays of char containing command line args
* returns:
* no return value. creates a tree of nodes, outputs vector of node names,
* “highest” level first, in ascending order of child vector contents..
* Apr 7, 2011  Bill Abbott
*/

int main( int argc, char* argv[] ) {

/* 3 level b tree:
* M has two kids, N and P, and
*    N has two kids, Q and S.
*        Q has no kids
*        S has no kids
*    P has one child – T.
*        T has no kids
*/

char nameIt[] =”malloc “;
char theRest[] = ” failed. Out of memory\n”;

struct node* T = malloc( sizeof(struct node));
if ( 0 == T ) { printf(“%s T %s”, nameIt, theRest ); return( 0 ); }
T->name = ‘T’;
T->kids[MAX_KIDS] = (struct node*) malloc(sizeof(struct node*) * MAX_KIDS);
if ( 0 == T->kids ) { printf(“%s T->kids %s”, nameIt, theRest); return( 0 ); }
T->kids[0] = (void*) 0;
T->kids[1] = (void*) 0;
T->kids[2] = (void*) 0;

/*
printf(“\n”);
printf(“(long)(T > kids) = 0X%x   \n”,  (long)*(T->kids) );
if ( (T->kids[0]))  printf(“*(T > kids[0]) = %c\n”,   *(T->kids[0]) );
if ( (T->kids[0]))  printf(“( (T > kids[0]) >name = 0x%x  %c\n”,   (T->kids[0])->name, (T->kids[0])->name );
if ( (T->kids[1]))  printf(“( (T > kids[1]) >name = 0x%x  %c\n”,   (T->kids[1])->name, (T->kids[1])->name );
if ( (T->kids[2]))  printf(“( (T > kids[2]) = 0x%x\n”,   (T->kids[2]) );
*/

struct node* S = malloc( sizeof(struct node));
if ( 0 == S ) { printf(“%s S %s”, nameIt, theRest ); return( 0 ); }
S->name = ‘S’;
S->kids[MAX_KIDS] = malloc( sizeof( struct node*) * MAX_KIDS);
if ( 0 == S->kids ) { printf(“%s S->kids %s”, nameIt, theRest); return( 0 ); }
S->kids[0] = (void*) 0;
S->kids[1] = (void*) 0;
S->kids[2] = (void*) 0;

struct node* Q = malloc( sizeof(struct node));
if ( 0 == Q ) { printf(“%s Q %s”, nameIt, theRest ); return( 0 ); }
Q->name = ‘Q’;
*(Q->kids) = malloc(sizeof(struct node*) * MAX_KIDS);
if ( 0 == Q->kids ) { printf(“%s Q->kids %s”, nameIt, theRest); return( 0 ); }
Q->kids[0] = (void*) 0;
Q->kids[1] = (void*) 0;
Q->kids[2] = (void*) 0;

struct node* P = malloc( sizeof(struct node));
if ( 0 == P ) { printf(“%s P %s”, nameIt, theRest ); return( 0 ); }
P->name = ‘P’;
P->kids[MAX_KIDS] = malloc(sizeof(struct node*) * MAX_KIDS );
if ( 0 == P->kids ) { printf(“%s P->kids %s”, nameIt, theRest); return( 0 ); }
P->kids[0] = T;
P->kids[1] = (void*) 0;
P->kids[2] = (void*) 0;

struct node* N = malloc( sizeof(struct node));
if ( 0 == N ) { printf(“%s N %s”, nameIt, theRest ); return( 0 ); }
N->name = ‘N’;
N->kids[MAX_KIDS] = malloc(sizeof(struct node*) * MAX_KIDS );
if ( 0 == N->kids ) { printf(“%s N->kids %s”, nameIt, theRest); return( 0 ); }
N->kids[0] = Q;
N->kids[1] = S;
N->kids[2] = (void*) 0;

struct node* M  = malloc( sizeof(struct node));
if ( 0 == N ) { printf(“%s N %s”, nameIt, theRest ); return( 0 ); }
M->name = ‘M’;
M->kids[MAX_KIDS] = malloc(sizeof(struct node*) * MAX_KIDS );
if ( 0 == M->kids ) { printf(“%s M->kids %s”, nameIt, theRest); return( 0 ); }
M->kids[0] = N;
M->kids[1] = P;
M->kids[2] = (void*) 0;

/*  printf(“\n”);
printf(“(long)(M > kids) = 0X%x   \n”,  (long)*(M->kids) );
printf(“*(M > kids[0]) = %c\n”,   *(M->kids[0]) );
printf(“( (M > kids[0]) >name = 0x%x\n”,   (M->kids[0])->name );
printf(“( (M > kids[1]) >name = 0x%x\n”,   (M->kids[1])->name );
printf(“( (M > kids[2]) = 0x%x\n”,   (M->kids[2]) );
*/

passThrough( M );

return( 1 );

} // main…

Macintosh-6:interview Bill4$ cc recursion.c
Macintosh-6:interview Bill4$ a.out

recur level: 0    n: 0x100260   name: M
(n > kids[0]) = 0x100220     >name = N
(n > kids[1]) = 0x1001e0     >name = P
(n > kids[2]) = 0x0

recur level: 1    n: 0x100220   name: N
(n > kids[0]) = 0x1001a0     >name = Q
(n > kids[1]) = 0x100160     >name = S
(n > kids[2]) = 0x0

recur level: 2    n: 0x1001a0   name: Q
(n > kids[0]) = 0x0
(n > kids[1]) = 0x0
(n > kids[2]) = 0x0

recur level: 2    n: 0x100160   name: S
(n > kids[0]) = 0x0
(n > kids[1]) = 0x0
(n > kids[2]) = 0x0

recur level: 1    n: 0x1001e0   name: P
(n > kids[0]) = 0x100120     >name = T
(n > kids[1]) = 0x0
(n > kids[2]) = 0x0

recur level: 2    n: 0x100120   name: T
(n > kids[0]) = 0x0
(n > kids[1]) = 0x0
(n > kids[2]) = 0x0

Q, S, T, N, P, M,
2, 2, 2, 1, 1, 0,
Macintosh-6:interview Bill4$